Diferencia entre revisiones de «Volcán»
De EnciclopediaGuanche
(No se muestra una edición intermedia del mismo usuario) | |||
Línea 77: | Línea 77: | ||
Los geólogos creen que las primeras etapas de formación de los volcanes en escudo consisten en erupciones frecuentes de delgadas [[colada basáltica|coladas de basaltos]] muy líquidas. A medida que prosiguen las erupciones también se producen erupciones laterales. Normalmente con el cese de cada fase eruptiva se produce el hundimiento del área de la cima. En las últimas fases, las erupciones son más esporádicas y la [[erupción piroclástica]] se hace más frecuente. A medida que esto sucede, las coladas de lava tienden a ser más viscosas, lo que provoca que sean más cortas y potentes. Todo esto a su vez ayuda a aumentar la pendiente de la ladera del área de la cima. | Los geólogos creen que las primeras etapas de formación de los volcanes en escudo consisten en erupciones frecuentes de delgadas [[colada basáltica|coladas de basaltos]] muy líquidas. A medida que prosiguen las erupciones también se producen erupciones laterales. Normalmente con el cese de cada fase eruptiva se produce el hundimiento del área de la cima. En las últimas fases, las erupciones son más esporádicas y la [[erupción piroclástica]] se hace más frecuente. A medida que esto sucede, las coladas de lava tienden a ser más viscosas, lo que provoca que sean más cortas y potentes. Todo esto a su vez ayuda a aumentar la pendiente de la ladera del área de la cima. | ||
− | Los volcanes en escudo son muy comunes y también se los encuentra en el sistema solar. El más grande conocido hasta la fecha es [[Olympus Mons]], sobre la superficie de [[Marte (planeta)|Marte]], encontrándose también varios de estos volcanes sobre la | + | Los volcanes en escudo son muy comunes y también se los encuentra en el sistema solar. El más grande conocido hasta la fecha es [[Olympus Mons]], sobre la superficie de [[Marte (planeta)|Marte]], encontrándose también varios de estos volcanes sobre la de Venus, aunque de apariencia más achatada. |
===Nube ardiente=== | ===Nube ardiente=== | ||
Línea 85: | Línea 85: | ||
===Lahar=== | ===Lahar=== | ||
− | Los conos compuestos también producen coladas de barro llamadas [[lahar]], una palabra de origen [[Indonesia|indonesio]]. Estos flujos se producen cuando las [[ceniza]]s y derrubios volcánicos se saturan de agua y descienden pendiente abajo, normalmente siguiendo los [[valle]]s de los ríos. Algunos de los lahares se producen cuando la saturación es provocada por la lluvia, mientras que en otros casos cuando grandes volúmenes de hielo y nieve se funden por una erupción volcánica. En [[Islandia]] al último caso se lo denomina | + | Los conos compuestos también producen coladas de barro llamadas [[lahar]], una palabra de origen [[Indonesia|indonesio]]. Estos flujos se producen cuando las [[ceniza]]s y derrubios volcánicos se saturan de agua y descienden pendiente abajo, normalmente siguiendo los [[valle]]s de los ríos. Algunos de los lahares se producen cuando la saturación es provocada por la lluvia, mientras que en otros casos cuando grandes volúmenes de hielo y nieve se funden por una erupción volcánica. En [[Islandia]] al último caso se lo denomina jökulhlaup y son devastadores. |
Destrucciones importantes de lahares se dieron en [[1980]] con la erupción del [[monte Saint Helens]], en Estados Unidos, que a pesar de los destrozos producidos, no produjo muchas víctimas debido a que la región es poco poblada. Otro fue en [[1985]] con la erupción del [[Nevado del Ruiz]], en [[Colombia]], la cual generó un lahar que mató a casi 20.000 personas. | Destrucciones importantes de lahares se dieron en [[1980]] con la erupción del [[monte Saint Helens]], en Estados Unidos, que a pesar de los destrozos producidos, no produjo muchas víctimas debido a que la región es poco poblada. Otro fue en [[1985]] con la erupción del [[Nevado del Ruiz]], en [[Colombia]], la cual generó un lahar que mató a casi 20.000 personas. |
Revisión actual del 23:06 19 dic 2021
Un volcán constituye el único intermedio que pone en comunicación directa la superficie terrestre con los niveles profundos de la corteza terrestre. La palabra volcán fue derivada del nombre del dios mitológico Vulcano.
Es el único medio para observar y estudiar los materiales líticos de origen magmático, que son el 80 % de la corteza sólida. En la profundidad del manto terrestre, el magma bajo presión asciende, creando cámaras magmáticas dentro o por debajo de la corteza. Las grietas en las rocas de la corteza proporcionan una salida para la intensa presión, y tiene lugar la erupción. Vapor de agua, humo, gases, cenizas, rocas y lava son lanzados a la atmósfera.
Un volcán, en esencia, es un aparato geológico, comunicante temporal o permanentemente entre el manto y la superficie terrestre. Un volcán es también una estructura geológica, por la cual emerge magma (roca fundida) y gases del interior de un planeta. El ascenso ocurre generalmente en episodios de actividad violenta denominados erupciones. Al acumularse el material arrastrado del interior se forma una estructura cónica en superficie que puede alcanzar alturas de unas centenas de metros hasta varios kilómetros. Al conducto que comunica el reservorio de magma o cámara magmática en profundidad con la superficie se le denomina chimenea. Esta termina en la cima del edificio volcánico, el cual está rematado por una depresión o cráter.
Algunos volcanes después de sufrir erupciones grandes, se colapsan formando enormes depresiones en sus cimas que superan el km de diámetro. Estas estructuras reciben el nombre de calderas.
La viscosidad (fluidez) de las lavas arrojadas por volcanes esta controlada por su composición química. Así, lavas más fluidas, o de tipo hawaiano, tienen composiciones ricas en hierro y magnesio y tienen un contenido bajo en sílice. Estas al salir de la chimenea se almacenan en el cráter o caldera hasta desbordarse, formándose ríos de lavas que pueden fluir distancias de varias decenas de kilómetros.
Las lavas viscosas tienen un alto contenido en sílice y vapor de agua. Dado que fluyen pobremente, forman un tapón en la chimenea lo que da lugar a erupciones explosivas, aumentando el tamaño del cráter. En casos extremos pueden destruir completamente el edificio volcánico como sucedió durante la erupción del Monte Santa Helena en 1980.
La lava no erupciona siempre desde una chimenea central ya que puede abrirse camino a través de aberturas en los flancos del volcán. Si estas erupciones son continuas pueden dar lugar a lo que se conoce como cono parásito. El Monte Etna tiene más de 200 de estos conos parásitos y algunos de ellos sólo expulsan gases. A estos últimos se los llama fumarolas.
Por lo general los volcanes están asociados a los límites de placas tectónicas, aunque hay excepciones como el vulcanismo de puntos calientes o hot spots ubicados en el interior de placas tectónicas, tal como es el caso de las islas Hawaii, teoría barajada también para el origen del Archipiélago Canario.
Los geólogos han clasificado los volcanes en tres categorías: volcanes en escudo, conos de cenizas y conos compuestos (también conocidos como estratovolcanes).
Un volcan de suma importancia fue el Paricutín en Mexico, aunque no es de grandes dimensiones, su importancia radica en lo que aportó a la vulcanología (1940s-50s) ya que pudo ser estudiado por Gerardo Murillo, el "Dr Atl" desde su nacimiento hasta su muerte (durando su vida cerca de una década).
Volcanes extraterrestres
El volcán conocido más grande del Sistema Solar es Olympus Mons, situado en Marte y actualmente activo, con unos 600 km de base y unos 27 km de altura. Otras estructuras volcánicas destacables pueden encontrarse en la superficie deÍo.
Actividad volcánica
La salida de productos gaseosos, líquidos y sólidos lanzados por las explosiones, constituyen los paroxismos o erupciones del volcán. Muchos de los volcanes que actualmente existen en la superficie de la Tierra no han dado muestras de actividad eruptiva y por eso se les llama volcanes extinguidos, independientemente de que en algún momento alcancen la actividad. Otros se hallan, o se han hallado en tiempos históricos no muy lejanos, en actividad, y por eso se les llama volcanes activos.
Esa actividad eruptiva es casi siempre intermitente, ya que los períodos de paroxismo alternan con otros de descanso, durante los cuales el volcán parece extinguido (Vesubio, Teide, Teneguía, Fuji, etc.).
Consiste en el desplazamiento de las rocas ígneas o en estado de fusión, desde el interior de la corteza terrestre hacia el exterior. Estos materiales salen a la superficie terrestre como si fueran ríos de rocas fundidas, conformando un volcan activo, al impulso de los gases.
Tipos de erupciones volcánicas
Artículo principal: Erupción volcánica
Dependiendo de la temperatura de los magmas, de la cantidad de productos volátiles que acompañan a las lavas y de su fluidez (magmas básicos) o viscosidad (magmas ácidos), el tipo de erupción puede ser:
Hawaiano
Sus lavas son muy fluidas, sin que tengan lugar desprendimientos gaseosos explosivos; estas lavas se desbordan cuando rebasan el cráter y se deslizan con facilidad, formando verdaderas corrientes a grandes distancias. Algunas partículas de lava, al ser arrastradas por el viento, forman hilos cristalinos que los nativos llaman cabellos de la diosa Pelé (diosa del fuego).Son los más comunes en el mundo.
Stromboliano
Recibe el nombre del Stromboli, volcán de las islas Lípari (mar Tirreno), al Norte de Sicilia. La lava es fluida, desprendiendo gases abundantes y violentos, con proyecciones de escorias, bombas y lapilli. Debido a que los gases pueden desprenderse con facilidad, no se producen pulverizaciones o cenizas. Cuando la lava rebosa por los bordes del cráter, desciende por sus laderas y barrancos, pero no alcanza tanta extensión como en las erupciones de tipo hawaiano.
Vulcaniano
Del nombre del volcán Vulcano en las islas Lípari. Se desprenden grandes cantidades de gases de un magma poco fluido, que se consolida con rapidez; por ello las explosiones son muy fuertes y pulverizan la lava, produciendo mucha ceniza, lanzada al aire acompañadas de otros materiales fragmentarios. Cuando la lava sale al exterior se consolida rápidamente, pero los gases que se desprenden rompen y resquebrajan su superficie, que por ello resulta áspera y muy irregular, formándose lavas de tipo aa.
Vesubiano
Difiere del vulcaniano en que la presión de los gases es muy fuerte y produce explosiones muy violentas. Forma nubes ardientes que, al enfriarse, producen precipitaciones de cenizas, que pueden llegar a sepultar ciudades, como le ocurrió a Pompeya y Herculano y el volcán Vesubio.
Mar
Los volcanes de tipo mar se encuentran en aguas someras, o presentan un lago en el interior de un cráter. Sus explosiones son extraordinariamente violentas ya que a la energía propia del volcán se le suma la expansión del vapor de agua súbitamente calentado, son explosiones freáticas. Normalmente no presentan emisiones lávicas ni extrusiones de rocas.
Peleano
De los volcanes de las Antillas es célebre el de la "Montaña Pelada", isla Martinica por su erupción de 1902, que destruyó su capital, San Pedro.
La lava es extremadamente viscosa y se consolida con gran rapidez, llegando a tapar por completo el cráter; la enorme presión de los gases, sin salida, levanta este tapón que se eleva formando una gran aguja. Así ocurrió el 8 de mayo de 1902, cuando las paredes del volcán cedieron a tan enorme empuje, abriéndose un conducto por el que salieron con extraordinaria fuerza los gases acumulados a elevada temperatura y que, mezclados con cenizas, formaron la nube ardiente que alcanzó 28 000 víctimas..
Krakatoano
Una explosión volcánica muy terrible, fue la del volcán Krakatoa. Originó una tremenda explosión y enormes maremotos. Se cree que este tipo de erupciones es debido a la entrada en contacto de la lava ascendente con el agua o con rocas mojadas, por ello se denominan erupciones freáticas. También tienen tres partes.
Erupciones submarinas
En el fondo oceánico se producen erupciones volcánicas cuyas lavas, si llegan a la superficie, pueden formar islas volcánicas. Éstas suelen ser de corta duración en la mayoría de los casos, debido al equilibrio isostático de las lavas al enfriarse y por la erosión marina. Algunas islas actuales como las Cícladas (Grecia), tienen este origen.
Avalanchas de origen volcánico (Lahares)
Hay volcanes que ocasionan gran número de víctimas, debido a que sus grandes cráteres están durante el reposo convertidos en lagos o cubiertos de nieve. Al recobrar su actividad, el agua mezclada con cenizas y otros restos, es lanzada formando torrentes y avalanchas de barro, que destruyen todo. Un ejemplo fue la erupción del Nevado de Ruiz (Colombia) el 13 de noviembre de 1985. El Nevado del Ruiz es un volcán explosivo, en el que la cumbre del cráter (5.000 msnm) estaba recubierta por un casquete de hielo; al ascender la lava se recalentaron las capas de hielo, formando unas coladas de barro que invadieron el valle del río Lagunilla y sepultaron la ciudad de Armero, con 24.000 muertos y decenas de miles de heridos.
Erupciones fisurales
Se originan en una larga dislocación de la corteza terrestre, desde unos metros; hasta varios km. La lava que fluye a lo largo de la rotura es fluida y recorre grandes extensiones formando amplias mesetas, con 1 ó más km de espesor y miles de km². Ejemplos de vulcanismo fisural es la meseta del Deccan (India).
Volcán en escudo
Cuando la lava expulsada por el volcán es fluida, del tipo haiwaiano, el volcán adquiere una forma de una estructura amplia y abovedada, que por su apariencia se los denomina en escudo.
Un volcán en escudo está formados principalmente por lavas basálticas (ricas en hierro) y poco material piroclastico. El mayor volcán de la Tierra es el Mauna Loa, un volcán en escudo en las islas Hawaii. El Mauna Loa, nace en las profundidades del mar, a unos 5 km y se eleva sobre el nivel del mar por unos 4.170 m, con unos 9,5 km de altura. Es mayor que el Monte Everest.
Los volcanes en escudo como el Mauna Loa se forman a lo largo de millones de años gracias a ciclos de erupciones de lava que se van superponiendo unas con otras.
El volcán de escudo más activo es el Kilauea, localizado en la Isla de Hawaii al lado de Mauna Loa. En el período histórico el Kilauea ha entrado unas 50 veces en erupción y es, por lo tanto, el volcán de este tipo más estudiado. El resultado de las erupciones constantes por millones de años ha dado lugar a la creación de las montañas más grandes de la Tierra (si se tiene en cuenta la altura contando desde la base en el lecho marino).
Los geólogos creen que las primeras etapas de formación de los volcanes en escudo consisten en erupciones frecuentes de delgadas coladas de basaltos muy líquidas. A medida que prosiguen las erupciones también se producen erupciones laterales. Normalmente con el cese de cada fase eruptiva se produce el hundimiento del área de la cima. En las últimas fases, las erupciones son más esporádicas y la erupción piroclástica se hace más frecuente. A medida que esto sucede, las coladas de lava tienden a ser más viscosas, lo que provoca que sean más cortas y potentes. Todo esto a su vez ayuda a aumentar la pendiente de la ladera del área de la cima.
Los volcanes en escudo son muy comunes y también se los encuentra en el sistema solar. El más grande conocido hasta la fecha es Olympus Mons, sobre la superficie de Marte, encontrándose también varios de estos volcanes sobre la de Venus, aunque de apariencia más achatada.
Nube ardiente
Cuando las erupciones de un volcán están acompañadas de gases calientes y cenizas se produce lo que se conoce como flujo piroclástico o nube ardiente. También conocida como avalancha incandescente, la nube ardiente se desplazan pendiente abajo a velocidades cercanas a los 200 km/h. La sección basal de estas nubes contienen gases calientes y partículas que flotan en ellos. De esta forma, las nubes transportan fragmentos de rocas que –gracias al rebote de los gases calientes en expansión– se depositan a lo largo de más de 100 km desde su punto de origen.
En 1902 una nube ardiente de un pequeño volcán llamado Pelée en la isla caribeña de Martinica destruyó a la ciudad portuaria de San Pedro. La destrucción fue tan devastadora que murió casi toda la población (unos 28.000 habitantes). A diferencia de Pompeya, que quedó enterrada en un manto de cenizas en un período de tres días y las casas quedaron intactas (salvo los techos por el peso de las cenizas), la ciudad de San Pedro fue destruida sólo en minutos y la energía liberada fue tal que los árboles fueron arrancados de raíz, las paredes de las casas desaparecieron y las monturas de los cañones se desintegraron. La erupción de Pelée muestra cuan distintos pueden ser dos volcanes del mismo tipo.
Lahar
Los conos compuestos también producen coladas de barro llamadas lahar, una palabra de origen indonesio. Estos flujos se producen cuando las cenizas y derrubios volcánicos se saturan de agua y descienden pendiente abajo, normalmente siguiendo los valles de los ríos. Algunos de los lahares se producen cuando la saturación es provocada por la lluvia, mientras que en otros casos cuando grandes volúmenes de hielo y nieve se funden por una erupción volcánica. En Islandia al último caso se lo denomina jökulhlaup y son devastadores.
Destrucciones importantes de lahares se dieron en 1980 con la erupción del monte Saint Helens, en Estados Unidos, que a pesar de los destrozos producidos, no produjo muchas víctimas debido a que la región es poco poblada. Otro fue en 1985 con la erupción del Nevado del Ruiz, en Colombia, la cual generó un lahar que mató a casi 20.000 personas.
Formas volcánicas relacionadas
Calderas
La mayoría de los volcanes presentan en su cima un cráter de paredes empinadas. Cuando el cráter supera 1 km de diámetro se lo denomina caldera volcánica.
Las calderas son estructuras de forma circular y la mayoría se forma cuando la estructura volcánica se hunde sobre la cámara magmática parcialmente vacía que se sitúa por debajo. Si bien la mayoría de las calderas se crea por el hundimiento producido después de una erupción explosiva, esto no es así en todos los casos.
En el caso de los enormes volcanes en escudo de Hawai, las calderas se crearon por la continua subsidencia a medida que el magma se drenaba desde la cámara magmática durante las erupciones laterales.
Las calderas de gran tamaño se forman cuando un cuerpo magmático granítico (félsico) se ubica cerca de la superficie curvando de esta manera las rocas superiores. Posteriormente, una fractura en el techo permite al magma rico en gases y muy viscoso ascender hasta la superficie, donde expulsa se manera explosiva, enormes volúmenes de material piroclástico, fundamentalmente cenizas y fragmentos de pumita. Estos materiales se denominan coladas piroclásticas y pueden alcanzar velocidades de 100 km/h. Cuando estos materiales se detienen, los fragmentos calientes se fusionan para formar una toba soldada que se asemeja a una colada de lava solidificada. Finalmente, el techo se derrumba dando lugar a una caldera. Este procedimiento puede repetirse varias veces en el mismo lugar.
Se conocen al menos 138 calderas que superan los 5 km de diámetro. Muchas de estas calderas son difíciles de ubicar, por lo que han sido identificadas con imágenes satelitales. Entre las más importantes se encuentra La Garita con unos 32 km de diámetro y una longitud de 80 que está ubicada en las montañas de San Juan al sur del estado de Colorado.
Erupciones fisurales y llanuras de lava
A pesar de que las erupciones volcánicas están relacionadas a estructuras en forma de cono, esto no es así ya que la mayor parte del material volcánico es extruido por fracturas en la corteza denominadas fisuras. Estas fisuras permiten la salida de lavas de baja viscosidad que recubren grandes áreas. La llanura de Columbia en el noroeste de los Estados Unidos se formó de esta manera. Las erupciones fisurales expulsaron lava basáltica muy líquida. Las coladas siguientes cubrieron el relieve y formaron una llanura de lava (plateau) que en algunos lugares tiene casi 1,5 km de grosor. La fluidez se evidencia en la superficie recorrida por la lava: unos 150 km desde su origen. A estas coladas se las denomina basaltos de inundación (flood basalts).
Este tipo de coladas sucede fundamentalmente en el suelo oceánico donde no pueden verse. A lo largo de las dorsales oceánicas, donde la expansión del suelo oceánico es activa, las erupciones fisurales generan nuevo suelo oceánico. Islandia está ubicada encima de la dorsal centroatlántica y ha experimentado numerosas erupciones fisurales. Las erupciones fisurales más grandes de Islandia ocurrieron en 1783 y se las denominaron erupciones de Laki. Laki es una fisura o volcán fisural de 25 km de largo que generó más de 20 chimeneas separadas que expulsaron corrientes de lava basáltica muy fluida. El volumen total de lava expulsada por las erupciones de Laki fue superior a los 12 km³. Los gases arruinaron las praderas y mataron al ganado islandés. La hambruna subsiguiente mató cerca de 10.000 personas. La caldera está situada muy por debajo de la boca del volcán.
Domo de lava
La lava rica en sílice, es decir, es viscosa y por lo tanto, apenas fluye y que es extruida fuera de la chimenea puede producir una masa bulbosa de lava solidificada que se denomina domo de lava. Debido a su viscosidad, la mayoría está compuesto por riolitas y otros por obsidianas. La mayoría de los domos volcánicos se desarrollan a partir de una erupción explosiva de un magma rico en gases.
Aunque la mayoría de los domos volcánicos están asociados a conos compuestos, algunos se forman de manera independiente. Tal es el caso de la línea de domos riolíticos y de obsidiana en los cráteres Mono en California.
Chimeneas y pitones volcánico
Los volcanes se alimentan del magma a través de conductos denominados chimeneas. Estas tuberías pueden extenderse hasta unos 200 km de profundidad. En este caso, las estructuras proveen de muestras del manto que han experimentado muy pocas alteraciones durante su ascenso.
Las chimeneas volcánicas mejor conocidas son las sudafricanas que están cargadas de diamantes. Las rocas que rellenan estas chimeneas se originaron a profundidades de 150 km, donde la presión es lo bastante elevada como para generar diamantes y otros minerales de alta presión.
Debido a que los volcanes están siendo rebajados constantemente por la erosión y la meteorización. Los conos de cenizas son desgastados con el tiempo, pero no sucede lo mismo con otros volcanes. Conforme la erosión progresa, la roca que ocupa la chimenea y que es más resistente, puede permanecer de pie sobre el terreno circundante mucho después de que haya desaparecido el cono que la contiene. A estas estructuras de las denomina pitón volcánico. Shiprock, en Nuevo México, es un claro ejemplo de este tipo de estructuras.
Material volcánico
El material volcáanico se forma de rocas intrusivas (en el interior ) y extrusivas (en el exterior) :
- Las intrusivas comprenden: Perioditita (Au,Ag,Pt,Ni yPb) y granito que posee Cuarzo (SiO2), Mica(SiAlx) y olivino (FeOx).
- Las extrusivas comprenden: basalto que tiene feldepasto(KALSi3O4),plagioclasas(CaAl2SI2O8), piroxeno(Si-XOH) y magnetita Obsidiana : KAlSi3O4 y SiO2